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ABSTRACT

The need to significantly reduce the mass, power,
and volume of future scientific spacecraft has resulted in
an increased interest on the part of NASA in the rela-
tively new technology of microelectromechanical Sys-
tems (MEMS). In addition to being light, compact and
low-power-consuming, MEMS technology offers other
advantages to space applications. Chief among these are
robust performance with solid-state reliability. In addi-
tion, the ability to array many identical MEMS devices
alows for very large scale integration (VLSI), fault tol-
erant, and distributed architectures. These microma-
chined, chip-level systems have been in the research
stage for over a decade and are currently being devel-
oped commercialy as such terrestrial applications as
automotive and biomedical sensors.

Although MEMS technology is promising for space
applications, it is relatively immature at this stage.
Much work still needs to be done to take MEMS devices
from the laboratory to the space environment. While
space applications can leverage from the progress
achieved by other industries, additiona technical work
is required to make these devices flight ready. This work
includes consideration of such issues as space perfor-
mance, survivability, and operation as well as space
architectures and flight qualification methodologies.
This paper identities the issues that, when resolved,
would enable the incorporation of MEMS into space
systems. It also describes various Jet Propulsion Labora-
tory (JPL) and JPL-funded activities addressing these
iSsues.

INTRODUCTION

Microclectromechanical systems (MEMS) are
mechanical devices manufactured using the same tech-
niques developed for the manufacturing of integrated
circuits (ICs). Although most MEMS devices today are
fabricated on silicon wafers which makes thcm rela-
tively simple to integrate with silicon-based control
electronics, MEMS arc not limited to these materials.
Silicon carbide [1], nickel [2], ceramic, and other mate-
rials currently being researched may be important as
Well .

Recent budgetary constraints in NASA resulted in a

need to incorporate “leap-ahead” technologies, such as
MEMS, to enable the realization of significantly
smaller, lighter, cheaper and more capable spacecraft.
MEMS technology can be applied in many of the sub-
systems on a spacecraft: Guidance sensors (such as
microgyros and microaccelerometers), actuators (such
asfocal plane microactuators), fluid flow controllers
(such as microvatves), and health monitoring sensors
(such as pressure and temperature microtransducers).
Other potential applications include microthrusters and
ultra-fine actuated optical elements. These tiny devices
and instruments enable not only the replacement of con-
ventional sensors with miniaturized ones, but also new
subsystems with unconventional architectures.

As promising as MEMS technologies seem today
there remains a significant amount of work, both in
basic research and applied areas, required to make them
flight ready. In order to integrate MEMS into space sys-
tems severa key areas need to be addressed. First, an
understanding of the impact of the space environment
on micromechanical structures and systems should be
developed to aid in the design of MEMS for this particu-
lar application. ‘I"his includes an understanding of mate-
rial and structural properties as well as possible failure
modes. Second, design methods and tools which address
space requirements need to be developed and applied.
Finally, testing methodology and packaging issues need
to be 1esolved. In parallel with these activities, addi-
tional instrument and subsystem concepts utilizing
MEMS need to be developed both on paper and in the
laboratory.

Ibis paper will focus on identifying areas where
further work is needed in order to enable the incorpora
tion of MEMS technologies into microspacecraft. It will
also outline ongoing JPL. and JPL-sponsored activities
in these areas.

LABORATORY TO FLIGHT

Flight quatification of new MEMS components and
systems in the traditional sense may not be adequate and
will certainly be too costly since this technology has no
flight heritage. New approaches to fiight qualification
are required in order to make this technology feasible
for space flight. An example for such a ncw approach is
the Accurate, Cost-Effective Qualification (ACEQ™)




currently Wing developed at JPL for NASA Code Q and
ARPA [3]. This approach is designed to identify redun-
dancies and voids among mission requirements, failure
modes, and available preventions, analyses and tests.
Reducing overlap while continuing to fill the voids will
significantly reduce the rigid, costly, technology-inde-
pendent qualification process currently in place.

To support this type of advanced qualification
approach, three primary activities are required:

1. Research leading to a better understanding of basic
properties of MEMS materials, structures and
devices.

2. Development of more accurate design methodolo-
giesand tools.

3. Development of advanced packaging to ensure
space survivability.

In parallel with the activities mentioned above,
earl y flight demonstrations are needed to gain experi-
ence with the integration of MEMS into a flight system,
their space operation, and any unanticipated failures.

Under standing of Basic Properties

The paper that initiated the work leading to MEMS
devices (“Silicon as a Mechanical Materia” by Kurt E.
Peterson [4] was published in 1982. During the past 13
years researchers have focused primarily on developing
new devices and micromachining processes. The
applied segment of this field has great momentum, often
leaving basic research issues behind. A good example of
this is the fact that the mechanical characteristics and
faillure modes of thin films manufactured from silicon,
polysilicon, and other MEMS materials are till not well
understood.

While basic research into materials properties,
behavior, and failure modes is currently taking place in
academic and industrial research programs, it is not
geared towards space applications. Thus it is important
to conduct a parallel effort to examine the effects of the
space and space-flight environments on MEMS materi-
as and systems. The effects of three specific environ-
ments need to be more carefully considered:

Shock. While shock requirements in automotive appli-
cation arc high (the ADX1.50 microaccelerometer man-
ufactured by Analog Devices can withstand 2000 g'sin
the unpowered state [5]) certain types of space systems
arc likely to encounter much higher shocks. For exam-
ple, the Mars Microlander, an advanced concept cur-
rently being proposed at JPL needs to withstand up to
10,000 g's [6]. Also, shocks resulting from pyro events
are nearly unavoidable in space. In addition to separa
tion from the launch vehicle and upper stage, some

space systems require additionat deployments during
later parts of the mission. For example, the Mars Path-
finder mission (which carries a surface lander) has 80
scheduled pyrotechnic events. Pyro shocks release
energy in al three axes and in a large range of frequen-
cies. ‘I"he higher the frequency, the higher the shock
response. Microstructure, due to their small size, tend
to have: much higher resonant frequencies than macro
structures and thus are immuned to darnage from low
frequency (<10 kHz) response. However, the effect of
the shock response due to higher freguencies is
unknown, In macro scale systems, mechanical joints
tend to attenuate the shock response at the higher fre-
quencies [7], yet compact microspacecraft will undoubt-
edly have far fewer joints and far less distance between
the pyro device and on board instruments. Regardless of
the impact of the shock on the MEMS device, ajolt of
any strength may create subtle changes in its microme-
chanics. MicroCracks in the material, that may result
from successive pyro shocks throughout its life, can
change important device characteristics, such as the res-
onant frequency of thes ystem, thus affecting the perfor-
mance of the device [2].

Fatigue. While terrestrial applications arc also con-
cerned with fatigue, space systems encounter a combi-
nation of effects that may make fatigue a more critical
issue. While fatigue was not observed in silicon micro-
structure tested for 21 consecutive days [8], some
space-bound devices and systems need to achieve much
longer life-times in the presence of a significant thermal
cycling which may accelerate fatigue of the system.
Fatigue in materials causes change in dynamic proper-
ties of the structural components which in turn affect the
dynamics of the device, thus degrading performance.

Radiation. Since MEMS are integrated electro-mechan-
ical devices, all impact on electronics due to radiation
still apply. However, it is also conceivable that radiation
may affect the mechanics. Research on the effects of
radiation on some material properties, such as hardness,
have been conducted for a variety of materials [9]. Such
change.s could potentiall y affect the characteristics of
devices utilizing materials susceptible to such damage
thus degrading their performance in the space radiation
environment.

While al of these issues are critical to the success
of MI <MS operation in space, none make MEMS inher-
itantly inadequate for space applications. Designed and
packaged properly, MEMS will provide the expected
high performance and high reliability in asmall and
light-weight unit. Basic research into the effects of the
space environment and associated failure modes will
greatly assist all phases of design, from early conccptu-




alization to the packaging of MEMS for space.

Design Approaches

The difficulty in designing MEMS lies in the strong
interaction between mechanics and electronics. One
cannot be designed and analyzed without consideration
of the response of the other. Short of running mechani-
cal design tools (such as various CAD systems) and cir-
cuit simulation tools (such as SPICE) iteratively, no
appropriate design tools are commercially available
today. As a result, most design issues get resolved in the
lab by actually manufacturing the device, testing its
functionality, and modifying the design accordingly.
However, several universities arc currently working on
tools to aleviate this painstaking process. MIT's MEM-
CAD, which wasjust released in a beta test phase, isa
good example of such a tool. It combines three-dimen-
sional, multi-energy-domain modeling with circuit sim-
ulation of integrated circuits [10]. Additional work will
be needed to incorporate space-specific reguirements
and responses (such as radiation effects) into the design
rules and simulation features already available.

Space Survivability and Packaging

The last step in the transition of MEMS from labo-
ratory to flight environment is packaging and testing of
the device as an instrument or a subsystem. Since
MEMS are chip-level devices, often it would make
sense to place them in a common package with other
die. Multi Chip Modules (MCMs) designed for space
application may provide adequate packaging for
MEMS. However, sSince MEMS technology encom-
passes many types of sensors with different require-
ments, other types of packages need to be considered.
Depending on the failure modes of the individual
device, appropriate packaging techniques need to be
developed and implemented.

ACTIVITIES IN PROGRESS

In addition to NASA -- which through the “ Better,
Faster, Cheaper” approach has made a commitment to
small and micro spacecraft -- other organizations are
activel y working towards flying MEMS. One of the
leaders in this area has been the Aerospace Corporation
which in 1993 published a document titled *Micro- and
Nanotechnology for Space Systems: An Initial Evalua-
tion [11]." In addition, the biggest investors in the
MEMS field, the Advanced Research Projects Agency
(ARPA) and the Nationat Science Foundation (NSF),
arc also gearing up to put MEMS in space. Recent inter-
est for this application in severa universities is acceler-
ating the development of new subsystem concepts and

demonstration flight experience.

At the Jet Propulsion Laboratory (JP1.), where the
demands for smaller, lower-power devices and sub-
systems are even more critical due to the tighter mass
and power margins available for deep space flight,
MEMS technology has been specifically pursued for
microspacecraft applications, Our activities are focused
on developing systems concepts using MEMS, develop-
ing MEMS devices, developing an understanding of the
impact of the space environment on MEMS and pursu-
ing early flight demonstrations.

System Concepts

Among the system-level concept devel opment
efforts currently taking place at JPL are the Second Gen-
eration Microspacecraft, the Mars Microlander, and the
Free Flying Magnetometer. These concepts all include
MEMS sensors to enable their miniature size.

Second Generation Microspacecraft. The Second
Generation Microspacecraft (SGM) is a technologi-
call y-aggressive concept for a 5.5 kg near-earth object
flyby microspacecraft [12]. The SGM project devel oped
spacectaft “building blocks’ that can be implemented
on an array of deep-space missions with a total wet mass
of less than 15 kg. These building blocks include high
levels of autonomy and an array of miniature sensors.

Mars Microlander. The Mars Microlander has been
proposed as a secondary payload (under the auspices of
the New Millennium Program) to the lander on the 1998
Mars Surveyor Spacecraft [6]. Shortly before the sepa-
ration of the primary lander, the spacecraft will release a
miniature microlande: that will dive into the Martian
atmosphere. The landed mass of 3.5 kg will include a
forebody (penctrator) and an aftbody (lander). The
lander will support two meteorological microsensors
(pressure and temperature) while the penetrator will
support an analytical microinstrrrment to detect water at
adepth of ameter below the Martian surface.

Free Flying M agnetometer. Thissilver-dollar-size free.
flyer will include a micromagnetometer (See below) in
addition to readout electronics, analog-to-digital conver-
sion, data storage, power, telemetry and control elec-
tronics [13]. Many such spin-stabilized flyers could be
released in the vicinity of planets to map their magnetic
fields.

New MEMS Devices and Systems

Development of MEMS devices for space science
and spacecraft applications is a primary charter of JPL's
Microdeviccs Laboratory. Below is a description of sev-
eral key developments currently being pursued:



Microaccelerometer. The microaccelerometer, shown
in Figure 1, is&d on electron tunneling technolog y. It
provides 10 to 100 times reduction in self-noise relative
to comparable-size microaccelerometers and 50 times
reduction in mass relative to comparable noise-floor
accelerometers. A single axis accelerometer weighs 1 g

and currently provides 10”g sensitivity [14].
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Figure 1: The JPL tunneling accelerometer set inside a
pin dip. The tunneling tip is located near the top.

Microgyro. The vibratory microgyro, shown in Figure
2,isajoint JPL/UCLA project [13]. The device weighs
100 mg in acompact 5 cm X 5 ¢cm X 5 cm package
(mechanical device dimensions are 1.2 cm x 1.2 cm X
1.2 em). The power consumption is less than 1 W and
the performance goat is 1 - 10 deg/hr bias stahility.
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Figure 2: The JPL/UCLA vibratory microgyro relative
to the size of a penny. The vibrating elements are the 4
pedals (squares) in the center of the chip.

Infrared Senser. The IR sensor, shown in Figure 3, is
also based on tunneling technology and requires no
cooling [13]. The 2 mm x 2 mm active array has a
broad-bandwidth and high sensitivity. The theoretica
Noise Equivalent Power (NEP) is 6 x 101 WAz and
the measured NEP is 3 x 130 The performance of this

sensor is 2-3 times better than the best available pyro-
electric sensor,

Micromagnetometer, Thetiny magnetometer ,shown in
Figure 4, can be used as a science instruments as well as
acomponent in an earth orbiting satellite’s attitude con-

Figure 3: The JPL tunneling infrared sensor.

trol system. It has a predicted 2.5 nT vector sensitivity
(for 100 loops) [13]. ‘Ibis nanotesla sensitivity is not
available in other state-of-the-ti uncooled, small (<

0.01 cta3), low-power (mW range) magnetometers. A 50
kHz bandwidth, 100 dB dynamic range has already been
demonstrated.

#

Figure 4: The JPL micromagnetometer shown in the
center of the Free Flying Magnetometer prototype.

Micro Weather Station, The micro weather station is a
collection of miniat ure sensors that provide in-situ mea-
surements of temperature, pressure, wind specd, humid-
ity and aerosol properties [131. Pressure is determined
by measuring the deflection of a thin silicon membrane
due to atmospheric pressure working against an evacu-
ated chamber. The deflection of the membrane is mea-
sured USiNg a capacitive circuit (as opposed to piczo-
resistive strain gauges used commercially) and allows
for a dynamic range exceeding five orders of magnitude.
The temperature measurement is accomplished by a
thermocouple producing accuracies of 0.1 °c a tempera-
tures between -70 and 70°c. Wind speed is determined
using a single chip laser doppler anemometer. Wind
speed accuracies are. as small as 0.1 m/s. Dewpoint is
detected by frequency shifts of a surface acoustic wave
oscillator coupled to a thermoelectric cooler.

A system concept for the micro weather station is
currently under development. Recent efforts have
focused on the individual sensor development.




Microseismometer. This 100 g seismometer, shown in
Figure 5, performs equally to 5 kg commercial seis-
mometers (10°g/NHz with a 4 Hz bandwidth) [13]. It
has an ultra-high frequency capacitance transducer for
required resolution and a stiff suspension requiring no
adjustment after deployment.

Figure 5: The JPL microseismometer relative to the size
of aquarter.

In addition to sensor development, JPL is also
exploring other space systems applications of MEMS:

Micropropulsion. The components necessary for a
micropropulsion System (such as microvalves, micro-
pumps, micronozzles, and microchannels) are currently
being developed primarily for biomedical and laserjet
printer applications. JPL is currently supporting an
activity to determine the feasibility of electrical and
chemical micropropulsion. There are two primary con-
cernsassociated with MEMS-based propulsion systems
(such as the one conceptualized in [20]). The first is the
understanding of microfiuidics. Fluids flowing through
orifices and channels that are micrometers wide are
operating within the boundary layer, and the tools and
methodologies’ that exist to evaluate fluid dynamics may
not be applicable. JPL is currently funding a project at
MIT to identify areas where current physical under-
standing is incomplete or uncertain and where future
research and development is needed [21]. Examples
include fluid-surface effects in MEMS devices, heat
transfer and pressure drops in micro-flow systems, and
phase changes in microcavities. The second concern is
that of hermetic seals. There are many ongoing microv-
alve development efforts and some microvalves are
even available commercially. These microvalves, how-
ever, have a high leakage rate. This problem is exacer-
bated when many such microvalves are arrayed to form
a complete micropropulsion System.

Impact of Space Environment

In order to understand the specific failure modes of
MEMS resulting from exposure to the space environ-

ment two types of tests need to be conducted, The first is
to test materials and basic elements of MEMS and the
second is to test completed devices. A recently formed
activity at JPL, the MEMS Integration Task, has taken
initiative in examining the impact of the space environ-
ment on MEMS. The main focus of this task is to test
the behavior of basic MEMS elements under harsh envi-
ronments Several devices currently under development
at JPL are also being tested concurrently. The first of
such environmental tests, a pyro shock response test,
will be conducted at the end of August 1995. Other tests
to determine the effects of radiation and thermal
cycling, will follow.

For these tests a set of test structures was selected
based on a literature survey of various MEMS devices.
The basic elements of MEMS are cantilevers (usually
on the order of 100 to 1000 pm long), bridges (com-
monly 300 to 1200 pm long) and membranes (sguare,
100 to 1000 pm on the side). Resonant frequencies
range from 2 to 65 kiiz for the first vibrational mode.
The cantilevers and bridges are common in most MEMS
devices while membranes are common in pressure
transducers and fluid flow controllers.

Microstructures cannot be machined without
defects, regardless of the fabrication process selected
[2]. In addition, internal residual stresses tend to be
high, For example, the measured residual stress for
polysilicon fabricated using the low-pressure chemical
vapor deposition (LPCVD) processis 0.1 - 0.3 GPa
[22]. Thus it is important to test for impact of various
dynamic environments and to develop a thorough
understanding of failures, when they occur, and their
effects on the entire system.

For the planned pyro shock test, wc are comparing
the resonant frequencics of the test structures before and
after each shock to determine if microcracks resulted
during, any of the three consecutive pyrotechnic events.
Even aslight change in resonant frequency caused by
microcracks or other forms of darnage affect the perfor-
mance of a MEMS device. The expected shock response
spectrum of this testis shown in Figure 6.For the sake of
comparison, it is plotted alongside the Mars Pathdinder
shock response design requirements. Traditional
dynamic tests (including the Pathfinder ones) have
focused on the 100 to 10,000 Hz range. However, typi-
cal MEMS cantilevers, beams and membranes have res-
onant frequencies much higher than these and may be
affected by dynamic responses in that regime.

The goal of this test is to provide designers of
space-bound MEMS with a better understanding of the
pyre-induced failure modes so that they can incorporate
this data early on in their design process. Similar data
from the environmental tests will further support this
goal.
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Figure 6: Shock response of test structures (calculated) relative to the Mars Path tinder mission design requirements.

Flight Demonstrations

The final step in making MEMS ready for space
flight is a demonstration of their operation in space. JPL
is currently working towards four such demonstrations:

Stanford OPAL Payload. Under contract from JPL,
Stanford is designing a MEMS-based payload for Stan-
ford's second student satellite, OPAL. This payload
which includes an array of commerciad MEMS sensors
will monitor the deployment of the gravity gradient
boom on-board the satellite. The off-the-shelf pressure
microsensors, microaccelerometers, and micromagne-
tometers Will be tested on the ground and evaluated in
space to determine their compatibility with space mis-
sions.

Mars Pathfinder Experiment. A microgyro experi-
ment has been proposed for an available dlot in the Mars
Pathfinder spacecraft's VME card cage. The microgym,
designed joinuy by JPL and UCLA, will be dormant
during the cruise phase to Mars and will operate during
the Entry, Descent, and Landing (EDL) phase to provide
data about the dynamics of the entry vehicle. As a test
payload, the microgyro will not be included in Path-
finder's control loop. However, it will provide important
data for improved understanding of atmospheric entry
dynamics.

STRV-2. The Space Technology Research Vehicle 2,
sponsored by BMDO and NASA, includes an electronic
test bed for the demonstration and evaluation of
advanced electronic technologies. One of the five pro-
posed demonstrations isajoint effort between the Air
Force' s Phillips Laboratory and JPL to evaluate the

performance of two different types of microaccelero-
meters, Analog Devices' ADXL.50 variable capacitance
accelerometer [5] and JPL.’s tunneling accelerometer
[14], during a highly-elliptical earth orbit fiight.

New Millennium. The New Millennium Program,
which tentatively includes three deep space flights and
two ear th orbiters in the. next five years, is committed to
implementing revolutionary technology in order to sig-
nificantly miniaturize spacecraft. Instruments and
MEMS are the focus of one of its five Integrated Prod-
uct Development Teams (IPDTs) which will develop
this technology for space, and implement various
MEMS on its flight demonstrations.

SUMMARY

Microelectromechanical Systems (MEMS) technol-
ogy is an exciting and promising new field. There are
many possible space system applications for this tech-
nology. Many more applications arc still yet to be identi-
fied, developed and evaluated. While the commercial
MEMS industry (for terrestrial applications) has gained
momentum over the past decade, there is considerable
work to be done -- both in basic research and applied
areas -- to ensure survivability and long-term operability y
in space. JPL is currently exploring these issues as well
as the development and implementation of advanced
MEMS sensors. Space system developers should care-
fully monitor the developments in this dynamic field as
it prownises to significantly reduce spacecraft mass,
power, and cost,
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